Penalized Fisher discriminant analysis and its application to image-based morphometry

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Fisher discriminant analysis and its application to image-based morphometry

Image-based morphometry is an important area of pattern recognition research, with numerous applications in science and technology (including biology and medicine). Fisher Linear Discriminant Analysis (FLDA) techniques are often employed to elucidate and visualize important information that discriminates between two or more populations. We demonstrate that the direct application of FLDA can lea...

متن کامل

A Complete Fisher Discriminant Analysis for Based Image Matrix and Its Application to Face Biometrics

This paper presents a Complete Orthogonal Image discriminant (COID) method and its application to biometric face recognition. The novelty of the COID method comes from 1) the derivation of two kinds of image discriminant features, image regular and image irregular, in the feature extraction stage and 2) the development of the Complete OID (COID) featuresbased on the fusion of the two kinds of i...

متن کامل

construction and validation of translation metacognitive strategy questionnaire and its application to translation quality

like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis (also called Linear Discriminant Analysis(LDA)) are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later c...

متن کامل

Multiview Fisher Discriminant Analysis

CCA can be seen as a multiview extension of PCA, in which information from two sources is used for learning by finding a subspace in which the two views are most correlated. However PCA, and by extension CCA, does not use label information. Fisher Discriminant Analysis uses label information to find informative projections, which can be more informative in supervised learning settings. We show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2011

ISSN: 0167-8655

DOI: 10.1016/j.patrec.2011.08.010